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SHIELDING APPLICATION OF PERTURBATION THEORY TO  DETERMINE CHANGES 

IN NEUTROid AND  GAMMA DOSES DUE  TO CHANGES IN SHIELD LAYERS 

by Daniel  Fieno 

Lewis  Research  Center 

SUMMARY 

Perturbation  theory  formulas  were  derived  and  applied  to  determine  changes  in 
neutron  and  gamma-ray  doses  due  to  changes  in  various  radiation  shield  layers  for  fixed 
sources. For a given  source  and  detector  position  the  perturbation  method  enables  dose 
derivatives  due  to all layer  changes  to be determined  from  one  forward  and  one  inhomog- 
eneous  adjoint  calculation.  Hence,  the  perturbation  method  for  obtaining  dose  deriva- 
t ives  requires fewer computations  for  design  studies of multilayer  shields. 

An illustrative  problem is presented  in  which a comparison was made of the  frac- 
tional  change  in  the  detector  dose  per  unit  change  in  the  thickness of each  shield  layer as 
calculated  by  perturbation  theory  and  by  successive  direct  calculation.  The  problem  in- 
volved a neutron  source  surrounded  by  spherical  layers of tungsten  and  lithium  hydride. 
The  perturbation  theory  gave -0.238 cm-l  for  the  fractional  change  in  the  neutron  dose 
p e r  unit  change  in  the  tungsten  layer  thickness;  the  result  from  direct  calculations  was 
-0.234 cm-l.  Similar  close  agreement was obtained  for  the  effect of a change  in the 
thickness of the  lithium  hydride  layer on the  neutron  dose  and  for  the  effects of changes 
in  both  the  tungsten  and  lithium  hydride  layers on the  detector  dose  due  to  secondary 
gamma rays generated  in  the  tungsten  layer. 

INTRODUCTION 

Nuclear  reactors  for  space  propulsion  systems or auxiliary  power  systems  require 
shielding  to  protect  personnel,  system  components,  and/or  payload  from  neutrons  and 
gamma-ray  radiation.  These  shields  are  usually  composed of alternate  layers of heavy 
metal  and  hydrogeneous  material.  One  shielding  problem  for  these  systems is to  deter-  
mine  the  number,  arrangement,  and  thiclmess of these  shield  layers  that  will  result  in 
minimum-weight  shields while maintaining  the  radiation  field at various  positions  around 
the  system  within  prescribed  limits. 
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One-dimensional  shield  weight  optimization  procedures  have  been  evolved  for  the 
design of layered  configurations  (refs. 1 to 3) and these  have  been  extended  to  constraints 
in  several  directions  around  two-dimensional  configurations  (refs. 3 to 5). All   these  re- 
quire  the  determination of the  change  in  dose at a detector  due  to a change  in  thickness of 
each  layer of a given  shield  configuration.  These are generally  obtained  with Sn t rans-  
port  calculations,  requiring at least  as many  separate  calculations as there  are  shield 
layers. As the  optimization  proceeds  and  the  configuration  changes,  this  procedure  has 
to  be  repeated  until  the  configuration  converges  to  an  optimum  one.  The  optimization 
procedure  becomes  time  consuming  and,  particularly  for  two-dimensional  configurations, 
would require  excessive  amounts of computer  time. 

The  present  work  applies  perturbation  theory  for  systems with  fixed sources  to ob- 
tain  information  to  apply  to  multilayer-shielding  problems.  The  use of perturbation 
theory  in  reactor  physics  applications is not  new (ref. S ) ,  the  primary  usage  being  the 
determination of reactivity  effects.  The  application of perturbation  methods  to  nonreac- 
tivity  problems  appears  mainly  in  the  Russian  literature  (refs. 7 and 8). The  perturba- 
tion  method  utilizes  only  one  forward  and  one  inhomogeneous  adjoint  solution  for  an 
initially  selected  layered  shield  configuration  to  determine all necessary  dose  deriva- 
tives at a detector  for a given  neutron or  gamma-ray  source component.  The  method 
appreciably  reduces  the  amount of calculations  required  for  multilayer  shields. In addi- 
tion,  perturbation  theory  yields a considerable  amount of other  information  concerning 
the  effects of individual  reaction  processes  (scattering,  absorption,  etc. ) on the  dose 
rate.  

The  equations  for  this  shield  perturbation  method  are  .developed  in  the  appendix  and 
a r e  applied  to a simple  spherical  system  to  determine  the  dose  derivatives of the  various 
layers  with respect  to  the  layer  thickness.  This  illustrative  problem  also  serves  to 
demonstrate  the  ability of the  perturbation  method  to  extract  additional  informative  data 
concerning  interaction  processes of the  various  shield  materials. 

METHOD OF ANALYSIS 

This  section  presents  the  equations  used  in  the  perturbation  analysis  for  systems 
with fixed  sources.  The  theory is outlined  for a fixed-source  neutron  system  since  the 
results  for  fixed-source  gamma  systems  and  coupled  neutron-gamma  systems  are  simi- 
lar in  form. A more  complete  derivation of the  equations is given  in  the  appendix.  The 
symbols  used  are  mainly  conventional;  those  that  are not a r e  defined. 

Consider  the  time-independent  multigroup  form of the  inhomogeneous  neutron  trans- 
port  equation.  This  equation is given  by 
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where $ (r, 6)  is the  angular f l u x  for  group g, cr is the  macroscopic  total  cross  sec- 
tion  for  group g, Q&r, a) is the  angular  fixed  source  for  group g, cr 1 (gl-g) is the 1 th- 
order  expansion  coefficient of the  scattering  from  group  g' to group  g, $g (y) is the 
(1 , m)th  expansion  coefficient of the angular flux  for  group g in a spherical  harmonics 
series,  and P (E )  is the ( 1 ,  m)th  spherical  harmonic as a function of the  unit  direc- 
tion  vector 52. The  boundary  condition  for  the  angular  flux at the  convex  boundary of 
the  system is taken as 

g " g 

1 ,  m 

- 2, m 

" 

$g(rs, E-)  = 0 g = 1, 2, . . . , G 

This  boundary  condition is the usua l  condition  and  implies  that  no  neutrons  enter  the 
system  from  the  vacuum.  Here rs indicates  the  outer  boundary of the  system  and 'Ti- 
designates  an  inward  direction. 

Once  the  solution, $ (r, a), to equation (1) has  been  obtained,  then a physical 
process  which depends  linearly on the  angular  flux  may  be  written as a functional, F. 
The  general  multigroup  form of F is given  by 

- 
" 

g 

The  functional F gives  contributions  caused  by  an  interaction  process for  the  neutrons 
in  the  system.  The  quantity P (r, 52)  has  the  role of an  interaction  cross  section  for 
group g at  position r for  neutrons  moving  in  the  direction 52. The  integrations a.re 

" 

g 

over all directions  and  over  the  entire  system  designated  by R. 
If a functional at some  specific  point, ;d, is required,  equation (3) may  be  written 

as 



where 6(F - Fd) is the  Dirac  delta  function.  The  general  expression,  equation (3), will 
be  used in  subsequent  derivations.  Equation  (4a)  will be invoked when results  such as 
radiation  dose at a given  position are   required.  

Following  Usachev  (ref. 7) an  equation  can  be  derived  for  the  importance of neutrons 
for  the  physical  process  described by the  functional F. The  importance I) (r, O), which 
is equal  to  the  effect F at  some  detector  position o r  region  due  to a unit  source of 
neutrons  placed  in  group  g  at (r, a), is given  in  multigroup  form by 

" 

g 
4 4  

The  boundary  condition  for  the  importance I) (r, 52)  follows  from  the  fact  that, if a neu- 
tron  escapes  from  the  system, it cannot  contribute  to  the  physical  process of interest. 
Therefore, its importance  must  be  zero  and  the  boundary  condition  becomes 

- 4  

g 

g = 1 , 2 , .  . . 

where 6' designates  an  outward  direction. 
The  next  step  in  the  analysis is to  derive  an  equation  in  terms of a perturbation  in 

the  density of the  material  constituents of the  system.  The  perturbation  in  the  density 
of a material,  which  can  be  related  to a change in the  thickness of that  material  shield- 
ing  layer, is introduced  in  the  equations  through  the  macroscopic cross sections  and  ap- 
pea r s  as a perturbation  in  the  cross  sections of the  system. If equation (1) were  solved 
directly with the  perturbed  cross  sections, a perturbed  value s ( r ,  52) for  the  angular 
flux would be  obtained.  The  transport  equation  for  the  perturbed  system is 

" 

g 

2 =o m=-2 
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along  with  the  boundary  condition 

S ( r  ,a ) = O  g = 1, 2, . . ., G - " 
g s  ( 8) 

In the  preceding  equation, S ( r ,  52)  represents  the  perturbed  value of the angular f l u x  for 
group  g.  Perturbations  in  the  cross  sections  are  indicated  by Sa. To generalize  the 
analysis,  the  source  term &g(r, 52)  is assumed  to be perturbed  by SQ (r, 52). 

The  neutron  transport  equation for the  perturbed  system  (eq. (7)), along  with  the 
equation for the  importance  (eq. (5)) and  the  boundary  condition  (eqs. (6) and (8)), can  be 
manipulated  algebraically  to  give the following  result: 

" 

g 
" " 

g 

Equation (9) is an  exact  relationship  and  represents a condition which the  perturbed 
angular  flux  and  importance  must  satisfy. If all the  perturbations  in  equation (9) a r e  
zero,  then  equation (9) along with equation (3) gives  the  important  result 
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The  perturbed  flux F ( r ,  52)  has  been  replaced  by its unperturbed  value C#I (r, 52). The 
result  expressed  by  equations (3) and (10) is well known (ref. 9) and is a necessary  con- 

" " 

g g 

dition  which  the  angular  fluxes  and  importances  must  satisfy. 
In  the  perturbed  system  the  functional Fp for  the  physical 

equal  to 
process of interest is 

(1 1) 

Here  the  general  case of a perturbed  system is considered  for which Pp(r, 51.) is the  per- 
turbed  value of the  quantity P (r, 51.). The  quantity Pp(r, SZ) is taken  to  be 

" 

" " g 
g g 

PP(r, 52)  = Pg(r, 51.1 + 6~ (r, 52)  
" " " 

g  g 

Next  consider  the  difference 6F of the  functionals Fp and F. Using  equations ( lo) ,  
( l l ) ,  and (12) in  equation (9) resul ts   in  

(12) 

6 F = F P - F  

Equation (13) is the  desired  perturbation  expression for a system with  fixed  sources. 
This  equation  gives  the  change  in  the  functional F for a given  physical  process  due  to 
changes  in  various  neutron  cross  sections,  changes  in  the  fixed  source,  and  changes  in 
the  physical  process  itself.  This  equation  can  also  be  used  to  give  the  change  in F due 
to  perturbations  in  the  individual  material  constituents of a shield  layer or  due  to per -  
turbations  in  individual  neutron  cross  sections.  Equation (13) is an  exact  relationship 
since no approximations  are  inherent  in  its  derivation.  However,  since  only  low-order 
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perturbation  theory is being  considered,  the  perturbed  flux S (r, 52) may be replaced 
by its unperturbed  value c$ (r, 52). 

In  shielding  analysis,  generally  the  biological  dose rate at a detector  position Fd 
is the  functional of greatest  interest.  The  interaction cross sections P (r, 52) are the 
flux-to-dose  conversion  factors  which  are  independent of and 5. Thus, we can  ex- 
p r e s s  P (r, 52)  as 

g 

" 

" g 
g 

" 

g 
" 

where  d is the  flux-to-dose  conversion  factor  for  group g. Insertion of equation (14) 
into  equation (4b) gives 

g 

Thus,  the  dose  functional F is 1/4n t imes  the  dose  rate at position Fdd. 

can  be put  in t e r m s  of a material  efficiency  function  hqF)  (ref. 8). That is, these 
terms  can  be  defined as 

The first two t e r m s  on the  right  side of equation (13), which  depend on the  density, 

where q indicates a given  material  component  and 6F, is the  contribution of these 
t e rms   t o  6F. The  efficiency  function hq(?) defines  the  change  in  the  functional F 
caused  by  the  introduction of a unit  quantity of material  q  at  position F. The  efficiency 
functions are  derived  in  the  appendix  for  the  various  terms  which  depend on the  neutron 
cross  sections.  The  efficiency  functions  are  useful  for  determining  the  effect on F of 
the  different  material  components of a region  at  any  position  within  that  region;  also 
they are  useful  for  determining  the  effect  on F of the  important  neutron  interactions 
which occur  for a given  material. 

The  calculational  procedure  used  in  applying  the  perturbation  method  to  determine 
changes  in  neutron  and  gamma  doses  due  to  changes  in  shield  layers is as follows: 

boundary  condition  (eq. (2)) for  the  angular  flux c$ (E a). 
(1) For an  initial,  layered  shield  configuration,  solve  equation (1) along  with  the 

g 
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(2) Solve  equation  (5)  along  with  the  boundary  condition  (eq.  (6)) for  the  angular  dose 
importance  function Q (r, 52). This  solution is for  an  inhomogeneous  adjoint  source at a 
detector  location and fo r  a set of flux-to-dose  conversion  factors. 

" 

g 

(3)  Compute  the  dose  functional F by  equations (3) and  (10).  The  functionals F, ob- 
tained  from  these  two  equations,  must be equal;  differences are caused  by  the  numerical 
approximations  used  in  obtaining  the  angular fluxes and  dose  importances. 

(4) Compute,  by  using  equation  (13),  the  change  in  the  dose  functional 6F  caused  by 
perturbations  in  the  cross  sections  (due  to  density  perturbations),  perturbations  in  the 
fixed  source,  and  perturbations  in  the  dose  response  functions.  The  quantity  6F is 
computed  separately  for  each  shield  layer  for a nominal  change  in  the  layer  density 6p. 

(5)  The  effect of each  shield  layer on F can be expressed as the  fractional  change 
in  the  dose  functional  per  unit  change  in  layer  thickness  6F/F6t.  The  coefficient 
6F/FGt is determined  by  taking  6F,  computed  for a nominal  change  in  the  density of a 
shield  layer 6p, and  dividing  by  the  product of the  functional F and  the  change  in  the 
thickness of the  shield  layer  6t.  This  change  in  the  thickness of a shield  layer  6t is 
related  to a change  in  the  density of a shield  layer  by  6t = Gpt/p where p is the  density 
of the  shield  layer  and t is its thickness;  that is, by  taking  the  product  pt as a con- 
stant. 

ILLUSTRATIVE  PROBLEM 

Some of the  capabilities of the  perturbation  method are illustrated  on  the  one- 
dimensional  spherical  system  shown  in  figure 1. This  system  has a central  cavity o r  
void  region  with a radius of 30 centimeters  followed  by a 15-centimeter-thick  layer of 
tungsten (W) and a 60-centimeter-thick  layer of lithium  hydride  (LiH).  A  neutron  source 
of 1 . 7 ~ 1 0 ~ ~  neutrons  per  second  having a fission  spectrum was uniformly  distributed  in 
the  cavity.  Doses  and  dose  importance  functions were evaluated  for a detector  located 
0.25  centimeter  from  the  outer  boundary of the  system.  The  composition of the  system 
is listed  in table I. 

Neutron fluxes and  importance  values  throughout  the  system  were  determined  by 
using  the Sn method  to  solve  both  the  forward  and  appropriate  inhomogeneous  adjoint 
equations.  A  26-energy-group  split  was  used  to  represent  the  neutron  spectra.  Elastic 
scattering was treated  through  the P3 order. An s16  Gauss-Legendre  quadrature was 
utilized  in  these  calculations. 

The  perturbation  method was applied  to  secondary  gamma  sources - treating  sources 
from  neutron  captures  and  from  inelastic  scatters  individually.  This  necessitated  gen- 
erating  each of these  sources  from  neutron  absorption  and  neutron  inelastic  scatter re- 
action  rates  in  the  tungsten  layer  (secondary  gamma  sources  in  the  lithium  hydride  layer 
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Figure 1. - One-dimensional  spherical  system  used in i l lustrat ive  problem. 
(Detector  position  at 0. 25 cm f rom  outer   L iH  boundary. )  

TABLE  I. - COMPOSITION OF 

SPHERICAL  SYSTEM 

1 

2 

3 

" 

%aid. 

Element 

W 
182 

w183 
w184 
w186 

LiH 

Li6 
~i~ 
H 

Density. 
g cm 3 
" 

- - - - - - - 

19.27 

5. 04 
2. 77 
5. 92 
5. 54 

0 .748  

0.042 
, 6 1 2  
. 0 9 4  

Atom density.  
a tom  b-cm 

- - - - - - - - 

0.0631 

0.0167 
, 0 0 9  1 
,0194 
.0179 

0.0568 

0.0042 
,0526 
.0568 
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were  neglected)  and  evaluating  separately  capture  gamma  and  inelastic  scatter  gamma 
fluxes;  the  importance  function  for  the  gamma  dose is independent of the  gamma  source 
component  and is evaluated  only  once. Sn transport  calculations  using a 15-energy- 
group  spli t   to  represent  the  gamma  spectra  were  made  in a manner  similar  to  those 
made  for  neutrons.  In  general,  the  perturbation  method  could  more  easily  be  applied 
by  using a 41-energy-group  coupled  neutron-gamma Sn transport  calculation if  the  in- 
tent  were  to  determine  effects of shield  layers  on  the  combined  neutron  and  gamma  dose 
rates.  

I 

The  effect of varying  the  density of each  layer  can be expressed as the  fractional 
change  in  dose  functional  per  unit  change  in  layer  thickness  6F/F6t.  These  quantities 
a r e  evaluated  and  compared  with  results  obtained  from  successive  direct  calculations 
in which  nominal  changes  in  the  thickness of each  layer  were  made.  The  effects of 
various  interactions  in  both  shield  layers on these  dose  derivatives  are  evaluated, as 
well as the  influence of various  material  components of each  layer. 

Additional  information is obtained  from  evaluating  the  perturbation  equations  for  the 
neutron  and  gamma  dose  functions.  This  information is given  in  terms of a dose  effi- 
ciency  function  which is the  derivative of the  dose  functional  with  respect  to  weight  and 
is evaluated as a function of position  in  each  layer. 

RESULTS 

Effect   of   Tungsten  and  Li th ium  Hydr ide  Layers  on  Neutron Dose 

The  neutron  dose  rate was calculated  from  equation  (3)  to  be 2.90~10 rem  per  
hour  for  the  source of 1 . 7 ~ 1 0 ~ ~  neutrons  per  second.  The  neutron  dose  calculated  from 
equation (10) was computed  to  be  3.llXlO  rem  per  hour.  The  ratio of the  dose  calcu- 2 

lated  from  equations (10) and  (3) was equal  to  1.07.  This  ratio  should  be  unity,  and 
departure  from  unity is a measure of the  approximations  inherent  in  the Sn method  for 
a given  spatial  mesh  and  angular  quadrature.  Thus, if the  values of the  dose  functionals 
differ by  a large enough  amount  to  preclude  obtaining  the  accuracy  desired,  then Sn 
calculated  angular  fluxes  and  importances  must  be  recalculated  with a finer  spatial 
mesh  and  angular  quadrature. 

2 

For  the  illustrative  problem  considered,  the  importance  function \E (T) gives  the 
g 

dose at the  detector  due  to a unit  isotropic  spherical  shell  source of neutrons  located at 
position r' in  energy  group g.  Since  the  qualitative  features of this  neutron  dose  im- 
portance  function k F) a r e   l e s s  well-lmown  that  those  for  the  flux + E), the  neutron 
importance  function  obtained as a solution  to  equation  (5) is shown  in  figure 2 for  groups 
1, 5, 10, and 15. Results  for  the  other  neutron  energy  groups show similar  spatial 

g  g 
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Figure 2. - Dose importance function for neutrons E), giving 
response of unit isotropic  spherical shell sources.  ?Dose  de- 
tector at  0.25 cm from outer  boundary.) 
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characteristics.  Figure 2 indicates  the  strong  effect of the  LiH  on  the  variation of the 
neutron  dose  importance  function  and  the  marked effect with  energy  group. 

The  effect of the  tungsten  layer  on  the  neutron  dose is presented  in table 11 in  terms 
of a coefficient  6F/F6t  which  gives  the  fractional  change  in  the  neutron  dose  per  cen- 
timeter.  The data in table I1 give  the  effect of the  important  reactions  which a neutron 
can  undergo  with  nuclei of tungsten.  Inelastic  neutron  scattering  accounts  for 6 1  percent 
of the  contribution  to  the  effect of the  tungsten  layer,  elastic  neutron  scattering  contrib- 
utes 20 percent,  (n, 2n) reactions  contribute 19 percent,  and  neutron  absorptions  have a 
negligible  contribution. 

6F;FGt FOR  TUNGSTEN  LAYER, 

COMPUTED BY PERTURBATION 

THEORY 

Neutron  yeaction 

Elas t ic   sca t te r ing  
Inelast ic   scat ter ing 
(n,  2n) Reaction 
Absorption 

Total  

Fract ional   change in 
neutron  dose  per 

cent imeter ,  
6F/'F6t, 

c m - 1  

-0.047 
-. 146 
-. 045 
-. 0001 

-0 .238 

The  effect of the  lithium  hydride  layer on the  neutron  dose is presented in table 111 
in  terms of the  coefficient  6F/F6t. In  addition,  partial  effects  due  to  constituents  hy- 
drogen (H) and  lithium  (Li) are  also  presented.  The  data  in  table 111 indicate  the  dom- 
inant  role of elastic  neutron  scattering  for  low-mass-number  elements  on  the  neutron 
dose  functional.  The  data  in  the  table  also  show  that  the  effects of H and  Li are nearly 
the  same with  respect to the  neutron  dose. 

A comparison is given  in  table IV of the  fractional  change  in  the  neutron  dose  func- 
tional  per  unit  change  in  the  tungsten  layer  thickness  6F/F6t  between  the  perturbation 
theory  result  and  the  result  calculated by successive  direct  transport  calculations.  The 
perturbation  theory  result is -0.238 crn-l,  while  the  result  from  direct  flux  calculations 
is -0.234 cm-'. The two results  are  in  close  agreement  with  each  other. For the LiH 
layer  the  perturbation  theory  result  for  the  coefficient  6F/F6t  is -0. 138 cm-l,  while 
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TABLE 111. - NEUTRON  DOSE DERIVATIVES 

6F/F6t  FOR LITHIUM  HYDRIDE LAYER, 

COMPUTED BY PERTURBATION  THEORY 
" 

Neutron  reaction Material 

H LiH  Li 

Fractional  change  in neu- 
tron  dose  per  centi- 

meter,  6F/F6t, c2m-l 

Elastic  scattering 

Absorption 

-. 027 -. 027 - - - - - -  Inelastic  scattering 
-0. 110 -0.040 -0.070 

""" -. 0005 -. 0005 

Total -0.138 -0.068 -0.070 

- _ _ _ ~  

TABLE IV. - COMPARISON - FOR THE NEUTRON 

PROBLEM - OF DERIVATIVE 6F/F6t 

CALCULATED BY PERTURBATION 

THEORY AND  BY  SUCCESSIVE 

DIRECT TRANSPORT 

CALCULATIONS 

Fractional  change in neutron  Ratio of pertur- 
dose  per  unit  change in bation  result to 

layer  thickness,  6F/F6t,  direct  result 
crn -1 

calculation 

W 
. 9 9  -. 140 -. 138 LiH 

1. 02 -0.234  -0 .238 

the  result  obtained  from  direct  flux  calculations is -0. 140 cm- l .  Again  the two resul ts  
are in  close  agreement  with  each  other. 

In  computing  the  perturbation  theory  results,  material  efficiency  functions h(T) 
were generated as intermediate  results  for  each  material  component  and  for  each  neu- 
tron  reaction as a function of position  within a layer.  This  additional  information  can be 
used  in  other  aspects of shield  analysis  since h(?) is a derivative  giving  the  change  in 
the  dose  functional F pe r  unit m a s s  of material  introduced  at  position i;: For this il- 
lustrative  problem  the  total h(?) of each  material  component is shown  in  figure  3(a)  for 
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Figure 3. -TOW neutron dose efficiency  functions  for  tungden, hydwen, and  lithium. 
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the W of the W layer  and  in  figures 3(b) and  (c) for  the H, Li , and  Li  components of 
the LiH layer. 

6 7 

Effect  of  Tungsten  and  Lithium  Hydride  Layers  on  Secondary Gamma  Dose 

The  gamma-ray  dose  rate w a s  calculated  from  equation (3) to   be 2. 59x10 rads   per  
hour  for a gamma-ray  source  due  to  neutron  absorptions  in W of 3.98xlO photons  per 
second.  By  using  equation (10) the  gamma  dose was also  calculated  to  be 2. 59x10 rads  
per  hour.  The  gamma-ray  dose w a s  calculated  from  equation  (3)  to be 7. 10x10 3  rads  
pe r  hour  for a gamma-ray  source  due  to  neutron  inelastic  scattering  in W of 8.  17x10 17 

photons pe r  second.  From  equation (10) the photon dose  for  this  case was calculated  to 
be 7.19X10 rads  per  hour.  

4 
17 

4 

3 

The  gamma-ray  dose  importance  function 9 e) is shown in  figure 4 for energy 
g 

groups 1, 5, and 10. Results  for  the  other photon  energy  groups show similar  spatial 
characteristics.  Figure 4 indicates  the  strong  effect of the W on the  variation of the 
gamma-ray  importance  function. 

The  secondary  source  distributions  due  to W(n, 7)  and W(n, n'y)  reactions  are shown 
in  figure  5(a).  The  perturbation  formula  (eq. (13)) for  the  secondary  gamma  source  in- 
cludes a term which is based on the  difference  between  the  perturbed  and  unperturbed 
neutron  fluxes.  This  perturbed  secondary  source  term is estimated  in  the  following 
manner:  The  neutron  transport  problem is calculated as a two-outer-iteration  problem. 
The  first  iteration is performed  for a small  perturbation  in  the  density of the W layer. 
This  yields a set  of perturbed  neutron  fluxes which are  stored.  The  density of W is next 
restored  to  its  unperturbed  value,  and  the  calculation  continues as a second  outer  itera- 
tion  for  the  unperturbed  neutron  fluxes..  The  difference  between  the  perturbed  and  un- 
perturbed  values of the  neutron  fluxes  are  then  used  to  calculate  the  perturbations  in  the 
secondary  sources.  Figure 5(b) presents  the  perturbations  in  the  secondary  source  dis- 
tributions  for  the W(n, y )  and W(n, n'y)  reactions  for a 1-percent  increase  in  the  density 
of the W layer. In a coupled  neutron-gamma  problem  the  secondary  gamma  sources 
never  explicitly  appear  in  the  equations  and  the  preceding  source  perturbation  calcula- 
tion is not necessary. 

The  effect of the  tungsten  layer on the  gamma  doses is presented  in  table V in   t e rms  
of the  coefficient  dF/F6t.  The  data  in  table V give  the  effect of each  reaction which a 
gamma  ray  can  undergo  with a nuclei of W. In  addition,  the  effect on the  gamma  dose 
of perturbations  in  the  secondary  gamma-ray  source is also  given.  The  data show that 
these  perturbations  in  the  secondary  gamma  source  are a major  contribution  to  the 
gamma  dose  functional.  The  effect of the  LiH layer on the  gamma  doses is presented 
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Figure 4. - Dose importance  function for photons qg(?), giv ing 
response of unit  isotropic  spherical  shell  sources.  (Dose 
detector  at 0.25 cm  from  outer  boundary. ) 
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( a )  Secondary  photon  sources i n  tungsten layer ( b )  Perturbation in  secondary gamma sources 
caused  by neutron  (n,y) and (n,  n'y) reactions caused  by a 1-percent increase in  tungsten 
with tungsten  nuclei. density. 

Figure 5. - Secondary  source distributions. 

TABLE V. - SECONDARY GAMMA DOSE  DERIVATIVES 

6F;'F6t  FOR  TUNGSTEN  LAYER,  COMPUTED  BY 

PERTURBATION  THEORY 

Photon  reaction: 
Scattering 
Absorption 

Secondary   source  
per turbat ions 

To ta l  

Secondary  photon  source 

Yv(n,y) reaction 

Fract ional   change  in   photon  dose 

W(n, n'l,)  reaction 

per   cent imeter ,   6F/F6t ,   cm- 1 

-0 .041 
-. 029 
-. 040 

-0.110 

-0.068 
-. 022 
-. 082 

-0.172 
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TABLE VI. - SECONDARY GAMMA DOSE  DERIVATIVES  6F/F6t  FOR 

LITHIUM  HYDRIDE  LAYER,  COMPUTED BY 

Photon  reaction 
Scat ter ing 
Absorption 

Total 

PERTURBATION  THEORY 

Secondary  photon  source 

W(n, y )  reaction  W(n,  n'y)  reaction 

Mater ia l  

Fractional  change  in  photon  dose  per  unit   change in 
layer   thickness ,   6F/F6t ,   cm- 1 

- 0 . 0 0 6 5  

(a) 

- 0 . 0 0 6 5  

- 0 . 0 1 9 5   - 0 . 0 2 6  

(a) (a) ~- 
- 0 . 0 1 9 5   - 0 . 0 2 6  

-0.010 

(a) 

-0.010 

- 0 . 0 2 9  

(a) 

-0 .029  

TABLE VII. - COMPARISON - FOR GAMMA 

PROBLEM - O F  DERIVATIVE  6F/F6t 

CALCULATED  BY  PERTURBATION 

THEORY AND BY  SUCCESSIVE 

DIRECT  TRANSPORT 

CALCULATIONS 

L Region Fractional  change  in  photon 
dose   per   un i t   change   in   l ayer  

thickness,   6F/F6t,   crn-l  

calculation  lation 

Ratio of p e r t u r -  
bation  result  to 

d i rec t   resu l t  

Secondary  photon  source: W(n, y )  react ion 

W 
1. 00 -. 026  -. 026  LiH 
1. 03 -0. 107 -0.110 

2 Secondary  photon  source: W(n, n'y) react ion 

- 0 . 0 3 9  

(a) 

- 0 . 0 3 9  
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in table VI in t e rms  of the  coefficient  6F/F6t  for  the two secondary  gamma-ray 
sources. 

The  coefficient  6F/F6t as computed  by  perturbation  theory  and  successive  direct 
flux  calculations is compared  in  table VI1 for  the W and  LiH  layers.  The  table  shows 
that  the  coefficient  6F/F6t  computed  by  perturbation  theory is in  agreement  with  the 
result  obtained  from  successive  direct f l u x  calculations  for all cases. 

The  total  material  efficiency  functions  hG) with respect  to  the  gamma-ray  dose are 
shown in  figures 6(a)  and  (b). These  functions  were  obtained  by  using  the  perturbation 
equations  for  each  material  component of the  LiH.  layer  and  for  the W of the W layer. 

I I I I 
34 38 42 46 

(a)  Tungsten.  Valuesof hTi) are  positive  fro 
30- to  34-centimeter  radius  and  of  order 10 2 . 

0 I I I ~~ 1- \ I  
44 52 60  68  76 84 92 103  108 

Radius, cm 
(b) L i th ium hydride. 

Figure 6. -Total  photon dose eff iciency  function  for  tungsten  and  for  l i thium hydrode.  Secondary gamma source  W(n.y)  reactions. 
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CONCLUSIONS 

The  result  for  the  coefficient 6F/FGt  giving  the  fractional  change  in  the  dose  per 
unit  change  in  shield  layer  thickness  that  were  obtained by  using  perturbation  theory 
formulas  for  fixed  sources  were  in  excellent  agreement  with  those  obtained  by  using 
successive  direct  transport  calculations.  The  perturbation  method  also  gives a con- 
siderable  amount of information  concerning  each  reaction  which a neutron  or photon 
can  undergo  with  the  nuclei of various  materials  and  thus  adds  to  the  qualitative  under- 
standing of changes  in  shield  design.  This  same  information is not easily  or  readily ob- 
tainable  from  successive  direct  transport  calculations. Although the  features of this 
perturbation  method  were  exhibited  with a simple  one-dimensional  spherical  problem, 
the  extension of the  perturbation  method  to  two-dimensional  geometry  and  to  coupled 
neutron - gamma-ray  problems  poses no additional  difficulty. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, September 1, 1972, 
503-05. 
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APPENDlX - PERTURBATION THEORY FOR SYSTEMS  WITH FIXED SOURCES 

Neutron  Transport  Equation 

The  application of perturbation  theory  in  the  computation of reactivity  effects is well 
known and,  in  fact, was used  from  the  very  beginning of the  atomic  energy  program. 
Less  well known is the  application of perturbation  theory  to  the  computation of nonreac- 
tivity  effects  such as, for  example,  the  breeding  ratio of a reactor  system,  the  sensi- 
tivity of the  biological  dose rate to  variations  in  shield  composition,  and  the  sensitivity 
of other  reactor  processes  to  variations  in  the  system.  The  theory  underlying  the  ap- 
plication of perturbation  methods  to  such  nonreactivity  problems  appear  mainly  in  the 
Russian  literature (refs. 7 and 8). Lewins  reviews,  in  reference 6, this  and  other  de- 
velopments  in  perturbation  theory. This appendix  gives  the details of the  mathematical 
analysis  underlying  the use of perturbation  theory  for  systems with  fixed  sources.  The 
symbols  used are mainly  conventional;  those  that are not are defined. 

To  provide a theoretical basis for  understanding  perturbation  theory  for  systems 
with  fixed  sources,  consider  the  time-independent  multigroup  form of the  neutron  trans- 
port  equation.  This  equation is given  by 

" 

where @ (r, a) is t h e  angular  flux  for  group  g, 5 is the  macroscopic  total  cross  sec- 
tion  for  group g, Q (r, a) is the  angular  fixed  source  for  group g, 5 (g'-g) is the 1 - 
order  macroscopic  cross  section  for  scattering  from  group  g'  to  group g, @ (F) is 
the (1 , m)  expansion  coefficient of the  angular  flux of group  g  in a spherical  harmonic 
series, and P (6) is the ( 1 ,  m)th  spherical  harmonic as a function of the unit  direc- 
tion  vector a. 

g  g 1 th 
g 

th 1 ,  m 

l , m  

For  convenience  in  performing  subsequent  manipulations,  the  equation is written  for 
one  material  component. In reality, all the  terms involving cross  sections  in  equa- 
tion (Al )  are summations  for all the  material  components  present  at  position F. Al- 
though  equation (Al )  will be studied  from  the  point of view of neutron  transport,  it  is ap- 
parent that the  analysis  will  also  pertain  to  photon  transport or coupled  neutron  and 
gamma-ray  transport when a proper  identification of t e r m s  is made. This is essential, 
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for  example,  in  determining  the  biological  dose  rate  external  to a reactor  shield which 
is composed of both a neutron and photon  component. 

In  deriving  equation  (Al)  the  angular  flux  which  occurs  in  the  elastic  scattering 
integral on the  right side of the  equation  has  been  expanded  in a s e r i e s  of spherical 
harmonics  and is given  by 

1=0 m=-1 

The  spherical  harmonics  are  defined  here as 

(2 - 6mo)(l - m)! 
Pl, 

= r 2  PF( p) cos (mcp) 1 2 0, 0 5 m 5 1 (A3a) 
( 1  + m)! 

and 

where Py( p)  a r e  the  associated  Legendre  polynomials of argument p and  where timo 
is the  Kronecker  delta  which has the  property  that 

For the  local  Cartesian  coordinate  system at position  shown  in  the  following 
sketch  (where 0 is the  polar  angle  and cp is the  azimuthal  angle), p = cos 0. 

i 
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Thus,  from  the  sketch,  the  unit  vector S2 is given  by 
- 

and  the  element of solid  angle dS2 given  by 

For geometries with symmetry  in  the  azimuthal  angle cp, all the  terms  in sin(mcp) are 
identically  zero  in  the  expansion of the  angular  flux.  Thus,  the  complexity of equa- 
tion (A2) is reduced  for  simple  geometries. For example,  only  the te rms   in  P (6) - 
the  Legendre  polynomials - are needed  for  one-dimensional slab or  spherical  geometry. 

The  spherical  harmonics  defined  here  have two important  properties. One of these 

1 9 0  

is the  orthogonality  property  given  by 

The  other  property is the  addition  theorem, 

2 

which is given  by  the  equation 

(A81 
m= -1 

By the  orthogonality  property of these  spherical  harmonics,  the @f, ,G) of equa- 
tion (A2) can  be  determined.  These  are  given  by 

The  quantity Gg (T) is the  scalar  neutron  flux  for  group g and wi l l  be  represented  more 

simply as CP (T). The  net  neutron  current  vector J' G) is given by  the  equation 
090 

g  g 



* . .  * 
where i, j, and k are unit  vectors  along  the x-, y-, and  z-coordinate  axes,  respec- 
tively. , 

The  unit  vector 5 is given  in  terms of the  spherical  harmonics  by 

Equations (A10) and ( A l l )  can  next be combined  to  give  the  dot  product of 5 and J (r). 
This is 

g 

- 
m=- 1 

To  complete  the  description of equation  (Al),  we  must  recall  that a number of quan- 
tities  must  satisfy  certain  normalization  requirements.  These are 

(A13a) 

(A13b) 

(A13c) 

(A13d) 

(A13e) 

Note also  that, when neutron  leakage is treated  by  means of a buckling  term,  the  quantity 
cr (T) must  be  suitably  modified.  The  quantities C and C are the  ma- 
croscopic  elastic,  inelastic, and  (n, 2n) cross  sections for group  g,  respectively.  The 
quantities ( pL) and ( PL ( pL)) represent  the  average  cosine  and  the  average 1 th 

order  Legendre  polynomial of elastic  scattering  for  group g, respectively. 

g es, g' c.  in, g' n2n, g 

R g 
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Funct ional   for  a Physical Process 

A physical  process  which  can  occur  in a system  described  by  equation  (Al)  and  which 
depends  linearly on the  angular  flux  can  be  written as a functional F which is given  in 
multigroup  form  by 

where F is given  by 
g 

F =x/  Gg(r, 52)Pg(r, a) dFd52 
" " 

S 2 R  

The  functional F gives  contributions  caused  by  the  physical  process  for  the  neutrons  in 
the  system.  The  quantity P (r, S 2 )  has the  role of an  interaction  cross  section  for  the 
physical  process  occurring  in  group g at  position i for  neutrons  moving  in  the  direc- 
tion 6. The  integrations  in  equations (A14)  and  (A15) are   over  all directions 5 and 
for  the  entire  system  designated as R. 

" 

g 

If a functional  at  some  specific  point, Fd, is required,  equation (A14) can  be  written 
as 

(A16a) 

(A16b) 

where 6(; - Fd) is the  Dirac  delta  function.  The  general  expression,  equation (A14), 
wi l l  be used  in  subsequent  derivations.  Equation (A16a) wi l l  be invoked  when resul ts  
such as radiation  dose  at a given  position are required. 

In  shielding  analysis, as an  example,  generally  the  biological  dose  rate  at a detec- 
tor  position 'd is the  functional of greatest  interest.  The  interaction  cross  sections 
P ( r ,  5 2 )  are the  flux-to-dose  conversion  factors  which are independent of and 5. 
Thus, P (r, 52)  can  be  expressed as 

" 

g " 

g 
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where  d is the  flux-to-dose  conversion  factor  for  group  g.  Insertion of equation (A17) 
into  equation (A16b) gives 

g 

Thus,  for  this  shielding  application,  the  functional F is 1/4n times  the  dose  rate at 
position 'd. 

Importance  Equation  for a Given  Physical  Process 

Following  Usachev (ref.  7),  an  equation  can  be  derived for the  importance of neu- 
trons  for a given  physical  process.  The  importance of an  initial  distribution of neutrons 
is equal  to  the  sum of the  importance of all the  scattered  neutrons  and of the  number of 
processes  which occur.  Since  the  importance of each  process is, by  definition,  unity, 
the  preceding  statement  results  in a law of conservation of importance.  Therefore,  let 
I& (r, a) be  the  importance of a neutron  introduced  in  group  g at position r' and  moving 
in  the  direction 5. If ? corresponds  to  the  position of a neutron  in  group g after  i t  
travels a distance  ds in  the  direction 'i at  position F, then  the  following  expression 
gives  the  importance  due  to M neutrons: 

g 

M G g ( F ,  5)  =  MI,^ (7,s) . (Probabi l i ty  that a neutron  does not  have a collision  in  ds) 
g 

+ ( Importance  due to scat tered  neutrons  produced by  or iginal  neutrons in  distance ds)  

+ {Importance of physical   process  in d i s tance   ds )  (A 1.9) 

The  terms on the  right  side of equation (A19)  which are  expressed  in  words  can  be  easily 
given  in te rms  of multigroup  cross  sections,  that  is, 
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I -  

m 2 

+ Mds - P (r, 52)  - (Unit  importance) 
" 

g (A201 

Next  expand Q (r', 52) in a Taylor's series about r': " 

g 

Also  make  the  following  replacement: 

Substitute  equation (A21) into  equation (A20), divide  through by  Mds,  and l e t   d s  - 0. 
The  result will  be  an  integrodifferential  equation for the  importance of neutrons  to  the 
given  physical  process.  This  equation is given  by 

+ Pg(r, 52)  g = 1, 2, . . . , G " 

(A2 3) 

Although equation (A23) is, in  the  strictest  sense,  not  adjoint  to  equation (Al) ,  i t  is 
adjoint-like  in  that it gives  the  importance of neutrons for the  physical  process. Note 
that  different  interaction  processes  described  by  the  function P (r, 52) result  in  different 
importance  functions Q (r, 52). 

" 

" g 
g 
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The  boundary  condition  for  the  importance @ (r, a) follows  from  the  fact  that, if a 
“ 

g 
neutron  escapes  from a system, it cannot  contribute  to  the  physical  process.  Therefore, 
its importance  must be zero  and  the  boundary  condition  becomes 

qg(FS, s+) = 0 g = 1, 2, . . . , G (A241 

where rs indicates  the  outer  boundary of the  system  and 6+ designates  an  outward 
direction. 

-.D 

In  deriving  equation (A23) and  in  analogy  with  equation  (Al),  the  importance  function 
which occurs  in  the  elastic  scattering  integral on the  right side of the  equation  has  been 
expanded  in a s e r i e s  of spherical  harmonics  and is given  by 

- 2  

By  the  orthogonality of the  spherical  harmonics  used  here,  the @, ,c) of equation (A25) 
can be determined.  They are given  by 

The  quantity  Qg e) is   the  scalar  importance for group  g  and wi l l  be represented  more 

simply as \k (T). A  vector ?+(I-), which is the  net  importance  current  vector, is de- 
fined by the  equation 

090 

g  g 

Equations  (All)  and (A27) can  be  combined  to  yield  the  dot  product of and J”(r), 
that is, 

g 

I 

m=- 1 
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Perturbation  Equation for a Given  Physical  Process 

Consider a system  which is perturbed  in a manner  such  that all the  cross  sections 
are varied.  The  solution of equation (Al)  with  the  perturbed  cross  sections  yields a 
perturbed  value  for  the  angular flux. The  neutron  transport  equation for this  case is 
given  by 

In the  preceding  equation 9 (r7 5 2 )  represents  the  perturbed  value of the  angular  flux  for 
group  g.  Perturbations  in  the  cross  sections  are  indicated  by  replacing a cross  section 
5 by 5 + 65 where 6 5  is the  perturbation.  The  source  term %(;, 5) is assumed  to 
undergo a perturbation  in  the  amount of SQ (r, 52). 

" 

g 

" 

" g 
Multiply  equation (A29) by Q ( r ,  5 2 )  and  then  integrate  the  resulting  equation  over 

all dFd52 as well as summing  the  results  over all groups g.  Next multiply  equa- 
tion (A23) by 9 (r, 52) and  then  integrate  the  resulting  equation  over all dFd52 as well 
as summing  the  results  over all groups  g.  Finally,  subtract  the  second  equation  from 
the  first;  and  the  result,  after  considerable  algebraic  manipulation, wil l  be 

g 
" 

g 
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In  the first term of the  preceding  equation,  dS is an element  on  the  outer  surface S of 
the  system. 

If all the  perturbations  in  equation (A30) are zero,  then  the  equation  reduces  to 

where F (r, 8) has  been  replaced  by  its  unperturbed  value @ (r, 8). Equation (A33) is 
well known and is the  multigroup  form of a similar  equation as obtained  by  Hansen  and 
Sandmeier  (ref. 9). 

" 

g g 

The  boundary  condition  for  the angular flux at  the  convex  boundary of the  system 
will  be  taken as 

@g(Fs,E-) = 0 g = 1, 2, . . ., G (A321 

This  boundary  condition is the  usual  condition  implying  that  no  neutrons  enter  the  system 
from  the  vacuum.  Here 6- designates  an  inward  direction.  Using  boundary  conditions 
(A24) and (A32) reduces  equation (A31) to 

Equation (A33) shows  that  the  functional F for a given  physical  process  may  be 
computed  in  two  different  ways.  The  equation  may  also be  used to  give  another  useful 
description  for  the  importance  function Q (r, 8). Let  the  source Q&r, S2) be  given  by 

" " 

g 
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The  source  given  by  this  equation  describes a source of neutrons  in  group g' at posi- 
tion ro and  moving  the  direction Eo. Next substitute  equation (A34) for Q&r, 52)  in 
equation (A33). This will  give 

4 " 

Equation (A35) leads  to  the  conclusion  that  the  importance  function + (r, 52)  is the  func- 
tional  for a physical  process  for a unit  source of neutrons  placed  in  group  g at posi- 
tion  and  traveling  in  direction 5. In  other  words,  the  importance  function + (r, 52) 
is a Green's  function.  Further, a solution of equation (A23) provides  the  functional  for 
a physical  process  for  every  possible  unit  source.  Equation (A35) gives  the  units of the 
importance  function @ (y) as that of the  functional F per  source  particle. 

the  functional F: If the  value of the  functional is needed  for a number of different  source 
distributions %(r, a), then  it is more  efficient  to  solve  for  the  importance  function 
+ (r, 52)  and  perform  the  convolution  indicated  by  the  second  part of equation (A33). 
However, if the  value of the  functional is needed  for a number of different  interaction 
cross  sections P (r, a), then it is more  efficient  to  solve  for  the  fluxes @ (r, 5 2 )  and 
perform  the  convolution  indicated  by  the first par t  of equation (A33). 

" 

g 
" 

g 

g 
From equation (A33) we can  deduce  the following  additional  conclusions  concerning 

" 

" 

g 
" " 

g  g 

In  the  perturbed  reactor  the  functional  giving  the  contributions  caused  by  the  given 
physical  process  for  the  neutrons  in  the  system is, in  analogy  to  equation (A14), equal  to 

Here  the  general  case of a perturbed  system is considered 

dFdQ (A36) 

for which PE(r, S2) is the  per- 
" 

turbed  value of the  cross-section-like  quantity P (r, S2). The  quantity  Pp(r, 52)  is taken 
to be  

" 6 " 

g g 

where 6 P  (r, 52)  represents  the  perturbation  in  the  interaction  cross  sections P (r, 52). 

term of equation (A30) by  using  the  boundary  conditions  given  by  equations (A24) and 
(A32). Then  insert  equations (A33) and (A36) into  equation (A30) giving  the  following 
result: 

" " 

g  g 
Next consider  the  difference  6F of the  functionals Fp and F. Eliminate  the first 
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4 a b F  = 4nFP - 4sF 

Equation  (A38) is the  desired  perturbation  expression  for a system  with  fixed  sources. 
This  equation  gives  the  change  in  the  functional F for  a given  physical  process as a 
result  of changes  in  various  neutron  cross  sections,  changes  in  the  fixed  source,  and 
changes  in  the  interaction  process  itself.  The  third  term on the  left  side of equa- 
tion  (A30) has been  split  into  its  component  parts  comprising  elastic  scattering,  inelas- 
tic  scattering,  and  the  (n, 2n) reaction.  The  elastic  scattering  reaction is considered  to 
be  anisotropic,  with Gaes(g'-g) being  the  perturbed  values of the t th-order  macro- 
scopic  transfer  cross  sections.  Inelastic  neutron  scattering  and  the  (n, 2n) reaction  are 
considered to be  isotropic  in  the  laboratory  coordinate  system  with Gain(g'-g) and 
ban2n(g'-g) being  the  perturbed  values of the  macroscopic  inelastic  scattering  and  (n, 2n) 
cross  sections,  respectively. 

L 

Equation  (A38) is an  exact  relationship  since no approximations  are  inherent  in its 
derivation.  However,  since  only  low-order  perturbation  theory is being  considered, 
the  perturbed  flux 9 can  be  replaced  by  its  unperturbed  value, @ (r, 52). " 

g  g 

Efficiency  Function for Functional F 

Definition of efficiency  function. - Abagyan  et al. introduce  in  reference 8 the con- 
cept of a material  efficiency  function  hqc)  relative  to a functional F: 

hqC;.) = 4rr6Fq(?) 
6PqcF) 

32 



The  efficiency  function  defines  the  change  in a functional F caused  by  the  introduction 
of a unit  quantity of material  q at the  point E'. The  efficiency  function  shows  the  sen- 
sitivity of the  physical  process  to  changes  in  the  density of the  different  materials  in  the 
system.  As  can be seen,  the  qumtity hq(T) has  the  dimension of the  change  in  the  func- 
t ional  per  gram at position i? for  material  q. 

If the  efficiency  functions hq(T) are laown,  then  the  variation of the  functional  6Fq 
with  the  change of density of material  q  in a unit  volume at position E' by  a,value 
~pq(;) is equal  to 

4x6Fq(F) = hqG)6pqG) 

and 

4n6Fq = x hq(F)6pqe)  dF 

47r6F = 7 47r6Fq 
Y 

Thus, a knowledge of efficiency  functions  provides  information  about  changes  in  func- 
tionals  resulting  from  small  changes  in  material  densities  6pqF).  The  efficiency  func- 
tions hqG) can  be  calculated  by  means of the  perturbation  expression  given  by  equa- 
tion  (A38). 

Equation  (A38) is the  basic  equation  for  the  computation of the  changes  in  the  func- 
tional F due  to  changes  in  the  cross  sections.  Some of the  terms in equation  (A38)  can 
be put  in  terms of efficiency  functions as defined  by  equation  (A39), as wi l l  be  shown  in 
the  next  sections which  follow,  with the  perturbed  fluxes  replaced  by  their  unperturbed 
values. 

~ Efficiency ~- function  for  total-cross-section  term. - Let  the  change  in  the  functional 
F due  to  changes  in  the  total  cross  section  for  material  q  (the  first  term  on  the  right 
side of eq.  (A38)) be designated as 6FF.  That is, let 

The integration  over 5 in  equation (A43) can be easily  performed  by  using  equations 
(A2) and  (A25)  along  with  the  equation  for  the  orthogonality  property of the  spherical 
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harmonics,  equation  (A7).  This will  give  for SF: the  following  expression: 

The  quantity 6crq is the  change  in  the  macroscopic  total  cross  section 8 for  mater ia l  
q  due  to  changes  in  the  density of material   q or to  changes  in  the  cross  section  itself. 
In other  words, 6crq is equal  to 

g g 

g 

where  pq is the  microscopic  total  cross  section  for  group  g  for  material  compo- 
nent q. The  quantity Aq is the  atomic  weight  for  material q, Nav is the  Avogadro 
number,  and %G) is the  original  atom  density of material  q  at  position F. The 
quantity 6 p q  may  be,  for  example,  the  estimated  experimental  error  in  the  total 
cross  section  for  group  g  for  material q. The  quantity  6pqF)  represents  the  change  in 
the  density of mater ia l  q at position F. 

t,  g 

t, g 

Let  us  write  equation (A43) in  the following form: 

That is, we wish  to  consider  6FF(p) as the  change  in  the  functional 6F: due  to a change 
in  the  density of material   q and to  consider 6FF(XS) as the  change  in  the  functional  due 
to  changes  in  the  group-dependent  microscopic-cross-section  data.  Thus, 486F:(p) is 
given  by 

with  the  efficiency  function  hFG)  being  equal  to 
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The  efficiency  function +e) is defined  here as the  change  in  the  functional F caused 
by a unit  change  in  the  density of material   q at position r' for the  effect  due  to  the 
total  cross  section.  The  component  parts of the  efficiency  function  given  by  equa- 
tion (A48) as a result  of absorption,  elastic  scattering,  inelastic  scattering,  and (n,  2n) 
reactions  may  be  obtained  by  using  the  appropriate  partial cross section  in  place of the 
total  cross  section. 

The  quantity 6Fp(XS) is the  change  in  the  functional  due  to  changes  in  the  total 
cross  section itself and is given  by 

As indicated  previously,  the  effect on the  functional F of the  partial   cross  sections 
which  make up the  total cross  section  can  be  computed by  using  equation (A49) with the 
appropriate  cross  section  in  place of the  total  cross  section. 

~" Efficiencyfunction - for  elastic  scattering  transfer  terms. - Let  the  change  in  the 
functional F due  to  changes  in  the  elastic  scattering  transfer  cross  sections  for  ma- 
terial  q  (the  second  term on the  right  side of eq. (A38)) be  designated by 6FZs. Then 
this  quantity is equal  to 

The  quantity 6C' (F, g'-g) is the  change  in  the  macroscopic 1 th-order  elastic  scat- 
tering  transfer  cross  section  for  group g' to  group  g  for  material  q  due  to  changes  in 
the  density of material   q o r  to  changes in  the  transfer  cross  section  itself. In other 
words, 

es,  q 

where p1 (g'-g) is the  microscopic  Ith-order  elastic  scattering  transfer  cross  sec- 
tion  for  group g' to  group  g  for  material  component q. The  quantity 6p1 (g'-g) may 
be  associated with, for  example,  experimental  errors  in  the  elastic  scattering  transfer 
cross  sections.  

es,  q 
es, p 
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. . . " 

Let   us  write equation (A50) in  the  following  way, 

4776F& = 4r6Fzs(p) + 4r6F&(XS) 

,\ That is, we  wish  to  consider 6FZs(p) as the  change  in  the  functional 6F& due t o  a 
. h' 
' change  in  the  density of material  q  and  to  consider 6F&(XS) as the  change  in  the  func- 

tional  due  to  changes  in  the  Zth-order  microscopic elastic scattering  transfer  cross 
sections.  Thus, 4rr6FZS(p) is given  by 

with the  efficiency  function hZsG) being  defined b y  

The  efficiency  function  hzsG) is defined  here as the  change  in  the  functional F caused 
by a unit  change  in  the  density of material  q  at  position  for  the  effect  due  to  the 
elastic  scattering  transfer  cross  sections. 

The  quantity GF&(XS) is the  change  in  the  functional  due  to  changes  in  the  elastic 
scattering  transfer  cross  sections  and is equal  to 

Equations  (A50)  to (A55) also  apply to inelastic  scattering  and  the (n,  2n) reaction 
given  by  the  third  and  fourth  terms on the  right  side of equation  (A38).  All  that  needs 
to  be  done is to replace  the  elastic  scattering  transfer  cross  sections by appropriate 
inelastic  scattering or (n, Zn) reaction  transfer  cross  sections. Although the  various 
scattering  processes are split  for  convenience,  we  could  combine all the  scattering 
terms  (elastic,  inelastic, and (n,  2n)),  which are second,  third,  and  fourth  terms of 
equation  (A38).  The  result is equations  (A54)  and  (A55)  with  pes(g'-g)  replaced  by 
p (g'-g) - the  total  microscopic  transfer  cross  section. 

2 

2 

Efficiency  function  for  the  fixed  source  term. - Let  the  change  in  the  functional F 
due  to  changes  in  the  fixed  source  term  (fifth  term  on  the  right  side of eq.  (A38)) be  
designated  by ~ F Q .  Then  this  quantity is equal  to 
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The  quantity SQ (r, Q) represents  the  change  in the fixed  source  for  group  g.  Equa- 
tion (A56) can  be  evaluated  directly if values of 6Qg(r, Q) a r e  known. 

the  dose rate must  be computed,  the  following  analysis is necessary  (this  does  not  apply 
to  coupled  neutron-gamma  problems): Part of the  photon  dose rate is the  result of 
gamma  rays  from  radiative  neutron  capture  and  inelastic  neutron  scattering.  This 
source  term is assumed to be  isotropic  and is equal  to 

" 

g " 

In  computing  the  biological  dose  rate, if both  the  neutron  and  photon  components of 

where Qq@) is given  by 

g '= l  

In  equation (A58), QqG) represents  the  process  rate  per  cubic  centimeter  for  material  
q  at  position F for a reaction  with  cross  section (3 for  neutron  energy  group g. 
The  summation  extends  over all neutron  energy  groups.  The  quantity fq is the  number 
of photons which appear  in  gamma  group  g  for  each  reaction which occurs  for  mate- 
rial q. 

due  to  changes  in  the  density of mater ia l  q and  the  reaction  cross  sections crq 
Thus,  6QqC) is equal  to 

x, g 
g 

The  quantity 6$G) now represents  a change  in  the  secondary  gamma  source QqG) 
g 

x, g' 
g 

Equation (A59) is obtained  by  using  equation (A58) and  an  equation  analogous  to  equa- 
tion (A45) for 6oq (T). In  equation (A59), 6fq is the  change  in  the  number of photons 
which appear  in  gamma  group  g for  each  reaction which occurs  for  material  q.  The 

x, g  g 
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quantity 6pq is the  change  in  the  microscopic  reaction  cross  section  for  neutron 
energy  group  g  for  material q. The  quantity 6 9  c) is the  perturbation  in  the f l u x  and 
is equal  to s e) - ~ ~ ( 7 ) .  

x7 g 
g 

g 
Let  us  write  equation (A56) for  a given  material  q  in  the  following way: 

That is, we wish  to  consider  6Fq(p) as the  change  in  the  functional 6Fq due  to a change 
in  the  density of material  q and  to  consider  6Fq(XS) as the  change  in  the  functional  due 
to  changes  in  the  reaction  cross  sections  and  gamma  spectra  for  the  particular  reaction 
which  produces  the  secondary  photon  source.  Thus,  4a6F&(p) is given  by 

Q Q 
Q 

47r6 Fq Q (p) = x ha(;) 6pq(?) d F  

with  the  efficiency  function  hqG)  being  equal  to Q 

The  efficiency  function h q F )  is defined  here as the  change  in  the  functional F caused 
by a unit  change  in  the  density of material  q at  position I' resulting  from a change  in 
the  secondary  source Qq(T). 

The  quantity  SFq(XS) is the  change  in  the  functional  due  to  cross-section  changes 

Q 

Q 
and is given  by 
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Total  efficiency  function  for a material. - The  total  efficiency  function h$G) for a 
material  q is the  sum of the  efficiency  functions  derived  in  the  preceding  sections  for 
var ious  terms of equation (A38), that is, 

... " - ~~ 
~ ~~ 

h$(T) = hy(T) + hzs(?) + hyn(?) + hLn(?) 

The efficiency  function h$Y) is, therefore,  the  total  change  in  the  functional F p e r  
gram of material  q  introduced at position F. The  total  dose  functional 6F$(p) caused 
by a change  in  the  density of material  q is equal  to 

or  equivalently, 

Perturbation Equation for Functional F in Terms of Various  Partial  Functionals 

The  total  change  in  the  functional F fo r  a system  with a fixed  source is given  by 
equation (A38). The  preceding  analysis  has  described  the  use of efficiency  functions  to 
calculate  changes  in  the  functional  due  to  the  density  changes  in  the  material  components 
of the  system.  The  change  in  the  functional F due  to  changes  in  the  cross  sections 
6F$(XS) of material  q is given  by 

Finally,  equation (A38) can be evaluated  in  terms of equations (A56),  (A66), and 
(A67). The  result is 

where  6Fp is defined  by  the  equation 
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The  summations  in  equation (A68) are   over  all material  components q. 

The  calculation la1 procedu 

Calculational  Procedure 

.re  for  using  perturbation th .eory  for  systems with  fixed 
sources  is as follows: 

(1) Solve  equation (Al) ,  by  using  the  boundary  condition  given  by  equation (A32), for 
the  neutron  fluxes  using  the  given  fixed  source  terms. 

(2) Solve  equation (A23), by  using  the  boundary  condition  given  by  equation (A24), 
for  the  importances  for  the  interaction  process of interest. 

(3) Compute  the  functional F €or the  interaction  process of interest  by  using  equa- 
tion (A14). 

(4) Compute  the  functional F by  using  equation (A33). The  two  values of this  func- 
tional,  computed  by  using  equations (A14) and (A33), must  be  equal  and  represent a 
necessary condition on the  solutions  obtained  for  the  fluxes  and  importances. 

(5)  Compute  the  change  in  the  functional 4~6F for  the  physical  process of interest 
due  to  perturbations  in  the  cross  sections,  perturbations  in  the  fixed  source,  and  per- 
turbations  in  the  interaction  process  itself  by  using  equation (A38). 
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